Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animal ; 17(8): 100910, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37544052

RESUMO

Ligularia virgaurea is the most widely functional native herbage in the alpine meadow pastures of the Qinghai-Tibet Plateau (QTP) and has multiple pharmacological and biological activities. The effect of L. virgaurea as a dietary component on the digestion and metabolism of sheep was evaluated by conducting feeding trials in metabolic cages. Thirty-two Tibetan yearling rams (29 ± 1.56 kg BW) were randomly allotted to four groups included in a completely randomised design with eight animals per treatment. Sheep were fed a basal diet (freshly native pasture) without the addition of L. virgaurea (control) or with the addition of L. virgaurea (100, 200, or 300 mg/kg BW per day) for 45 days. Addition of L. virgaurea to the diet of Tibetan sheep was found to influence the average daily gain (quadratic [Q], P < 0.001), feed conversion ratio (Q, P = 0.002), CH4 emissions (linear [L], P = 0.029), DM (Q, P = 0.012), neutral detergent fibre (Q, P = 0.017), acid detergent fibre (ADF) (Q, P = 0.027), and ether extract (EE) intake (Q, P = 0.026). Apparently, different levels of L. virgaurea affected the digestibility coefficients of DM, ADF, and EE (L, P > 0.05; Q, P < 0.05). The nitrogen (N) intake (Q, P = 0.001), retained nitrogen (Q, P < 0.001), and N utilisation efficiency (L, P > 0.05; Q, P ≤ 0.001) were also affected by the dietary inclusion of L. virgaurea. Effects of L. virgaurea feeding were also witnessed on methane energy (CH4-E) (L, P = 0.029), gross energy (GE) (Q, P = 0.013), digestible energy (DE) (Q, P = 0.015), and metabolisable energy (ME) intake (Q, P = 0.015). Energy utilisation efficiency expressed as a proportion of GE intake (DE/GE intake, ME/GE intake, ME/DE intake, FE/GE intake, and CH4-E/GE intake) manifested quadratic changes (P < 0.05) with the increase in the L. virgaurea supplementation level. The addition of L. virgaurea increased the activity of superoxide dismutase (Q, P = 0.026) and glutathione peroxidase activity (Q, P = 0.039) in the serum. Overall, the greatest improvement of feed digestibility, N retention, energy utilisation, and antioxidant capacity of Tibetan sheep was yielded by the inclusion of 200 mg/kg BW per day of L. virgaurea. Therefore, the addition of an appropriate amount of L. virgaurea to the diet of Tibetan sheep is safe and natural, and may enhance the sustainability of small ruminant production systems in QTP areas.


Assuntos
Digestão , Ligularia , Animais , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes/metabolismo , Detergentes , Dieta/veterinária , Suplementos Nutricionais , Metabolismo Energético , Nitrogênio/metabolismo , Ruminantes/metabolismo , Ovinos , Tibet
2.
J Anim Sci Biotechnol ; 14(1): 71, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37303054

RESUMO

BACKGROUND: Sustainable strategies for enteric methane (CH4) mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure. The present study aimed to investigate the effects of dietary xylooligosaccharides (XOS) and exogenous enzyme (EXE) supplementation on milk production, nutrient digestibility, enteric CH4 emissions, energy utilization efficiency of lactating Jersey dairy cows. Forty-eight lactating cows were randomly assigned to one of 4 treatments: (1) control diet (CON), (2) CON with 25 g/d XOS (XOS), (3) CON with 15 g/d EXE (EXE), and (4) CON with 25 g/d XOS and 15 g/d EXE (XOS + EXE). The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period. The enteric CO2 and CH4 emissions and O2 consumption were measured using two GreenFeed units, which were further used to determine the energy utilization efficiency of cows. RESULTS: Compared with CON, cows fed XOS, EXE or XOS + EXE significantly (P < 0.05) increased milk yield, true protein and fat concentration, and energy-corrected milk yield (ECM)/DM intake, which could be reflected by the significant improvement (P < 0.05) of dietary NDF and ADF digestibility. The results showed that dietary supplementation of XOS, EXE or XOS + EXE significantly (P < 0.05) reduced CH4 emission, CH4/milk yield, and CH4/ECM. Furthermore, cows fed XOS demonstrated highest (P < 0.05) metabolizable energy intake, milk energy output but lowest (P < 0.05) of CH4 energy output and CH4 energy output as a proportion of gross energy intake compared with the remaining treatments. CONCLUSIONS: Dietary supplementary of XOS, EXE or combination of XOS and EXE contributed to the improvement of lactation performance, nutrient digestibility, and energy utilization efficiency, as well as reduction of enteric CH4 emissions of lactating Jersey cows. This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.

3.
Front Microbiol ; 14: 1174740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350783

RESUMO

Compared to traditional herbage, functional native herbage is playing more important role in ruminant agriculture through improving digestion, metabolism and health of livestock; however, their effects on rumen microbial communities and hindgut fermentation are still not well understood. The objective of present study was to evaluate the effects of dietary addition of Allium mongolicum on bacterial communities in rumen and feces of claves. Sixteen 7-month-old male calves were randomly divided into four groups (n = 4). All calves were fed a basal ration containing roughage (alfalfa and oats) and mixed concentrate in a ratio of 60:40 on dry matter basis. In each group, the basal ration was supplemented with Allium mongolicum 0 (SL0), 200 (SL200), 400 (SL400), and 800 (SL800) mg/kg BW. The experiment lasted for 58 days. Rumen fluid and feces in rectum were collected, Rumen fluid and hindgut fecal were collected for analyzing bacterial community. In the rumen, Compared with SL0, there was a greater relative abundance of phylum Proteobacteria (p < 0.05) and genera Rikenellaceae_RC9_gut_group (p < 0.01) in SL800 treatment. In hindgut, compared with SL0, supplementation of A. mongolicum (SL200, SL400, or SL800) decreased in the relative abundances of Ruminococcaceae_UCG-014 (p < 0.01), Ruminiclostridium_5 (p < 0.01), Eubacterium_coprostanoligenes_group (p < 0.05), and Alistipes (p < 0.05) in feces; Whereas, the relative abundances of Christensenellaceae_R-7_group (p < 0.05), and Prevotella_1 (p < 0.01) in SL800 were higher in feces, to maintain hindgut stability. This study provided evidence that A. mongolicum affects the gastrointestinal of calves, by influencing microbiota in their rumen and feces.

4.
Animals (Basel) ; 13(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174596

RESUMO

The objective of this study was to determine the effect of high-concentrate diets on the blood parameters and liver transcriptome of goats. Eighteen goats were allocated into three dietary treatments: the high level of concentrate (HC) group, the medium level of concentrate (MC) group, and the low level of concentrate (LC) group. The blood parameters and pathological damage of the gastrointestinal tract and liver tissues were measured. In hepatic portal vein blood, HC showed higher LPS, VFAs, and LA; in jugular vein blood, no significant differences in LPS, VFAs, and LA were recorded among groups (p > 0.05). Compared to the LC and MC groups, the HC group showed significantly increased interleukin (IL)-1ß, IL-10, TNF-α, and diamine oxidase in jugular vein blood (p < 0.05). Liver transcriptome analysis discovered a total of 1269 differentially expressed genes (DEGs) among the three groups and most of them came from the HC vs. LC group. There were 333 DEGs up-regulated and 608 down-regulated in the HC group compared to the LC group. The gene ontology enrichment analysis showed that these DEGs were mainly focused on the regulation of triacylglycerol catabolism, lipoprotein particle remodeling, and cholesterol transport. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the liver of the HC group enhanced the metabolism of nutrients such as VFAs through the activation of AMPK and other signaling pathways and enhanced the clearance and detoxification of LPS by activating the toll-like receptor signaling pathway. A high-concentrate diet (HCD) can significantly promote the digestion of nutrients; the liver enhances the adaptability of goats to an HCD by regulating the expression of genes involved in nutrient metabolism and toxin clearance.

5.
Front Vet Sci ; 10: 1142965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035805

RESUMO

Rumen bloat is the most common digestive disorder in fattening ruminants, which is responsible for around 2-3 % of deaths in the ruminants industry and is therefore considered to be a serious threat to ruminant farming. The root cause of rumen bloat caused by feeding high concentrate dies would be attributed to the production of a large amount of stable foam during the fattening period. The exact mechanism of rumen foam formation has yet to be investigated. Proteins, polysaccharides and carboxylates derived from feed, and synthesized by microbes during the rumen fermentation may act as foaming agents or stabilizers in the formation progress of rumen foam. Supplementation of condensed tannins and other additives can be an effective way to prevent feedlot bloat induced by feeding high concentrate diets.

6.
Foods ; 12(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37107384

RESUMO

Interest in organic cows' milk has increased due to the perceived superior nutritional quality and improved sustainability and animal welfare. However, there is a lack of simultaneous assessments on the influence of organic dairy practices and dietary and breed drivers on productivity, feed efficiency, health parameters, and nutritional milk quality at the herd level. This work aimed to assess the impact of organic vs. conventional management and month on milk yield and basic composition, herd feed efficiency, health parameters, and milk fatty acid (FA) composition. Milk samples (n = 800) were collected monthly from the bulk tanks of 67 dairy farms (26 organic and 41 conventional) between January and December 2019. Data on breed and feeding practices were gathered via farm questionnaires. The samples were analyzed for their basic composition and FA profile using Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC), respectively. The data were analyzed using a linear mixed model, repeated measures design and multivariate redundancy analysis (RDA). The conventional farms had higher yields (kg/cow per day) of milk (+7.3 kg), fat (+0.27 kg), and protein (+0.25 kg) and higher contents (g/kg milk) of protein, casein, lactose, and urea. The conventional farms produced more milk (+0.22 kg), fat (+8.6 g), and protein (+8.1 g) per kg offered dry matter (DM). The organic farms produced more milk per kg of offered non-grazing and concentrate DM offered, respectively (+0.5 kg and +1.23 kg), and fat (+20.1 g and +51 g) and protein (+17 g and +42 g). The organic milk had a higher concentration of saturated fatty acid (SFA; +14 g/kg total FA), polyunsaturated fatty acid (PUFA; +2.4 g/kg total FA), and nutritionally beneficial FA alpha linolenic acid (ALNA; +14 g/kg total FA), rumenic acid (RA; +14 g/kg total FA), and eicosapentaenoic acid (EPA; +14 g/kg total FA); the conventional milk had higher concentrations of monounsaturated FA (MUFA; +16 g/kg total FA). Although the conventional farms were more efficient in converting the overall diet into milk, fat, and protein, the organic farms showed better efficiency in converting conserved forages and concentrates into milk, fat, and protein as a result of reduced concentrate feeding. Considering the relatively small differences in the FA profiles between the systems, increased pasture intake can benefit farm sustainability without negatively impacting consumer nutrition and health.

7.
Microbiol Spectr ; : e0281622, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36809032

RESUMO

The dynamics of ruminant-rumen microbiome symbiosis associated with feeding strategies in the cold season were examined. Twelve pure-grazing adult Tibetan sheep (Ovis aries) (18 months old; body weight, 40 ± 0.23 kg) were transferred from natural pasture to two indoor feedlots and fed either a native-pasture diet (NPF group) or an oat hay diet (OHF group) (n = 6 per treatment), and then the flexibility of rumen microbiomes to adapt to these compositionally different feeding strategies was examined. Principal-coordinate analysis and similarity analysis indicated that the rumen bacterial composition correlated with altered feeding strategies. Microbial diversity was higher in the grazing group than in those fed with native pasture and an oat hay diet (P < 0.05). The dominant microbial phyla were Bacteroidetes and Firmicutes, and the core bacterial taxa comprised mostly (42.49% of shared operational taxonomic units [OTUs]) Ruminococcaceae (408 taxa), Lachnospiraceae (333 taxa), and Prevotellaceae (195 taxa), which were relatively stable across different treatments. Greater relative abundances of Tenericutes at the phylum level, Pseudomonadales at the order level, Mollicutes at the class level, and Pseudomonas at the genus level were observed in a grazing period than in the other two treatments (NPF and OHF) (P < 0.05). In the OHF group, due to the high nutritional quality of the forage, Tibetan sheep can produce high concentrations of short-chain fatty acids (SCFAs) and NH3-N by increasing the relative abundances of key bacteria in the rumen, such as Lentisphaerae, Negativicutes, Selenomonadales, Veillonellaceae, Ruminococcus 2, Quinella, Bacteroidales RF16 group, and Prevotella 1, to aid in nutrients degradation and energy utilization. The levels of beneficial bacteria were increased by the oat hay diet; these microbiotas are likely to help improve and maintain host health and metabolic ability in Tibetan sheep to adapt to cold environments. The rumen fermentation parameters were significantly influenced by feeding strategy in the cold season (P < 0.05). Overall, the results of this study demonstrate the strong effect of feeding strategies on the rumen microbiota of Tibetan sheep, which provided a new idea for the nutrition regulation of Tibetan sheep grazing in the cold season on the Qinghai-Tibetan Plateau. IMPORTANCE During the cold season, like other high-altitude mammals, Tibetan sheep have to adapt their physiological and nutritional strategies, as well as the structure and function of their rumen microbial community, to the seasonal variation of lower food availability and quality. This study focused on the changes and adaptability in the rumen microbiota of Tibetan sheep when they adapted from grazing to a high-efficiency feeding strategy during the cold season by analyzing the rumen microbiota of Tibetan sheep raised under the different management systems, and it shows the linkages among the rumen core and pan-bacteriomes, nutrient utilization, and rumen short-chain fatty acids. The findings from this study suggest that the feeding strategies potentially contribute to variations in the pan-rumen bacteriome, together with the core bacteriome. Fundamental knowledge on the rumen microbiomes and their roles in nutrient utilization furthers our understanding of how rumen microbial adaptation to harsh environments may function in hosts. The facts obtained from the present trial clarified the possible mechanisms of the positive effects of feeding strategy on nutrient utilization and rumen fermentation in harsh environments.

8.
Sci Rep ; 12(1): 12478, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864287

RESUMO

This study aims to compare the performance of multiple linear regression and machine learning algorithms for predicting manure nitrogen excretion in lactating dairy cows, and to develop new machine learning prediction models for MN excretion. Dataset used were collated from 43 total diet digestibility studies with 951 lactating dairy cows. Prediction models for MN were developed and evaluated using MLR technique and three machine learning algorithms, artificial neural networks, random forest regression and support vector regression. The ANN model produced a lower RMSE and a higher CCC, compared to the MLR, RFR and SVR model, in the tenfold cross validation. Meanwhile, a hybrid knowledge-based and data-driven approach was developed and implemented to selecting features in this study. Results showed that the performance of ANN models were greatly improved by the turning process of selection of features and learning algorithms. The proposed new ANN models for prediction of MN were developed using nitrogen intake as the primary predictor. Alternative models were also developed based on live weight and milk yield for use in the condition where nitrogen intake data are not available (e.g., in some commercial farms). These new models provide benchmark information for prediction and mitigation of nitrogen excretion under typical dairy production conditions managed within grassland-based dairy systems.


Assuntos
Lactação , Nitrogênio , Algoritmos , Animais , Bovinos , Dieta/veterinária , Feminino , Modelos Lineares , Aprendizado de Máquina , Leite/química , Nitrogênio/análise
9.
Animals (Basel) ; 12(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35625089

RESUMO

The effect of dietary crude protein (CP) level on ammonia (NH3) emissions from slurry from lactating Holstein-Friesian cows was studied. Twenty-four-hour total collections of faeces and urine were made from 24 lactating Holstein-Friesian cows fed four total mixed rations containing 141, 151, 177, and 201 g CP/kg DM (6 cows/diet). The collected urine and faeces from each cow were combined to form 2 kg duplicate slurry samples (weight/weight; fresh basis) according to the proportions in which they were excreted. NH3 emissions from the slurry samples were measured, during 0-24 and 24-48 h intervals in six open-circuit respiration chambers maintained at two temperatures (8 or 18 °C). NH3 emissions for the 0-24 and 0-48 h intervals, as well as the average daily emissions, increased linearly with increasing dietary CP level. Increasing the temperature from 8 to 18 °C positively affected NH3 emissions, but only for the 0-24 h interval. In situations where direct measurements are impossible, NH3 emissions from slurry can be predicted accurately using equations based on dietary CP level supported by either urinary nitrogen, faeces nitrogen, or both. In summary, increasing dietary CP level linearly increased average daily NH3 emissions from slurry, with a 5.4 g increase for each 10 g increase in dietary CP.

10.
Sci Rep ; 12(1): 7550, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534492

RESUMO

Previous work has demonstrated some benefit from alternative breeds in low-input dairying, although there has been no systematic analysis of the simultaneous effect of Jersey crossbreeding on productivity, health, fertility parameters or milk nutritional quality. This work aimed to understand the effects of, and interactions/interrelations between, dairy cow genotypes (Holstein-Friesian (HF), Holstein-Friesian × Jersey crossbreds (HF × J)) and season (spring, summer, autumn) on milk yield; basic composition; feed efficiency, health, and fertility parameters; and milk fatty acid (FA) profiles. Milk samples (n = 219) and breed/diet data were collected from 74 cows in four UK low-input dairy farms between March and October 2012. HF × J cows produced milk with more fat (+ 3.2 g/kg milk), protein (+ 2.9 g/kg milk) and casein (+ 2.7 g/kg milk); and showed higher feed, fat, and protein efficiency (expressed as milk, fat and protein outputs per kg DMI) than HF cows. Milk from HF × J cows contained more C4:0 (+ 2.6 g/kg FA), C6:0 (+ 1.9 g/kg FA), C8:0 (+ 1.3 g/kg FA), C10:0 (+ 3.0 g/kg FA), C12:0 (+ 3.7 g/kg FA), C14:0 (+ 4.6 g/kg FA) and saturated FA (SFA; + 27.3 g/kg milk) and less monounsaturated FA (MUFA; -23.7 g/kg milk) and polyunsaturated FA (- 22.3 g/kg milk). There was no significant difference for most health and fertility parameters, but HF × J cows had shorter calving interval (by 39 days). The superior feed, fat and protein efficiency of HF × J cows, as well as shorter calving interval can be considered beneficial for the financial sustainability of low-input dairy farms; and using such alternative breeds in crossbreeding schemes may be recommended. Although statistically significant, it is difficult to determine if differences observed between HF and HF × J cows in fat composition are likely to impact human health, considering average population dairy fat intakes and the relatively small difference. Thus, the HF × J cow could be used in low-input dairying to improve efficiency and productivity without impacting milk nutritional properties.


Assuntos
Lactação , Leite , Ração Animal/análise , Animais , Bovinos , Indústria de Laticínios , Dieta/veterinária , Ácidos Graxos/metabolismo , Feminino , Fertilidade , Leite/química
11.
J Anim Sci ; 100(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460418

RESUMO

Manure N from cattle contributes to nitrate leaching, nitrous oxide, and ammonia emissions. Measurement of manure N outputs on commercial beef cattle operations is laborious, expensive, and impractical; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were to 1) collate an international dataset of N excretion in feces and urine based on individual observations from beef cattle; 2) determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and 3) develop robust and reliable N excretion prediction models based on individual observation from beef cattle consuming various diets. A meta-analysis based on individual beef data from different experiments was carried out from a raw dataset including 1,004 observations from 33 experiments collected from 5 research institutes in Europe (n = 3), North America (n = 1), and South America (n = 1). A sequential approach was taken in developing models of increasing complexity by incrementally adding significant variables that affected fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models with experiment as a random effect. Simple models including dry matter intake (DMI) were better at predicting fecal N excretion than those using only dietary nutrient composition or body weight (BW). Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI. A model including DMI and dietary component concentrations led to the most robust prediction of fecal and urinary N excretion, generating root mean square prediction errors as a percentage of the observed mean values of 25.0% for feces and 25.6% for urine. Complex total manure N excretion models based on BW and dietary component concentrations led to the lowest prediction errors of about 14.6%. In conclusion, several models to predict N excretion already exist, but the ones developed in this study are based on individual observations encompassing larger variability than the previous developed models. In addition, models that include information on DMI or N intake are required for accurate prediction of fecal, urinary, and total manure N excretion. In the absence of intake data, equations have poor performance as compared with equations based on intake and dietary component concentrations.


Assuntos
Esterco , Nitrogênio , Amônia/análise , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Fezes/química , Esterco/análise , Nitratos , Nitrogênio/análise , Óxido Nitroso/análise
12.
J Dairy Sci ; 105(6): 5124-5140, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35346462

RESUMO

Direct measurements of methane (CH4) from individual animals are difficult and expensive. Predictions based on proxies for CH4 are a viable alternative. Most prediction models are based on multiple linear regressions (MLR) and predictor variables that are not routinely available in commercial farms, such as dry matter intake (DMI) and diet composition. The use of machine learning (ML) algorithms to predict CH4 emissions from across-country heterogeneous data sets has not been reported. The objectives were to compare performances of ML ensemble algorithm random forest (RF) and MLR models in predicting CH4 emissions from proxies in dairy cows, and assess effects of imputing missing data points on prediction accuracy. Data on CH4 emissions and proxies for CH4 from 20 herds were provided by 10 countries. The integrated data set contained 43,519 records from 3,483 cows, with 18.7% missing data points imputed using k-nearest neighbor imputation. Three data sets were created, 3k (no missing records), 21k (missing DMI imputed from milk, fat, protein, body weight), and 41k (missing DMI, milk fat, and protein records imputed). These data sets were used to test scenarios (with or without DMI, imputed vs. nonimputed DMI, milk fat, and protein), and prediction models (RF vs. MLR). Model predictive ability was evaluated within and between herds through 10-fold cross-validation. Prediction accuracy was measured as correlation between observed and predicted CH4, root mean squared error (RMSE) and mean normalized discounted cumulative gain (NDCG). Inclusion of DMI in the model improved within and between-herd prediction accuracy to 0.77 (RMSE = 23.3%) and 0.58 (RMSE = 31.9%) in RF and to 0.50 (RMSE = 0.327) and 0.13 (RMSE = 42.71) in MLR, respectively than when DMI was not included in the predictive model. When missing DMI records were imputed, within and between-herd accuracy increased to 0.84 (RMSE = 18.5%) and 0.63 (RMSE = 29.9%), respectively. In all scenarios, RF models out-performed MLR models. Results suggest routinely measured variables from dairy farms can be used in developing globally robust prediction models for CH4 if coupled with state-of-the-art techniques for imputation and advanced ML algorithms for predictive modeling.


Assuntos
Lactação , Metano , Animais , Bovinos , Dieta/veterinária , Feminino , Intestino Delgado/metabolismo , Metano/metabolismo , Leite/química
13.
J Environ Manage ; 295: 113074, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214792

RESUMO

Accurately predicting nitrogen (N) outputs in manure, urine and faeces from beef cattle is crucial for the realistic assessment of the environmental footprint of beef production and the development of sustainable N mitigation strategies. This study aimed to develop and validate equations for N outputs in manure, urine and faeces for animals under diets with contrasting crude protein (CP) concentrations. Measurements from individual animals (n = 570), including bodyweight, feed intake and chemical composition, and N outputs were (i) analysed as a merged database and also (ii) split into three sub-sets, according to diet CP concentration (low CP, 84-143 g/kg dry matter, n = 190; medium CP, 144-162 g/kg dry matter, n = 190; high CP, 163-217 g/kg dry matter, n = 190). Prediction equations were developed and validated using residual maximum likelihood analysis and mean prediction error (MPE), respectively. In low CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.244, 0.594 and 0.263, respectively; diet CP-specific equations improved accuracy in certain occasions, by 4.9% and 18.3% for manure N output and faeces N output respectively, while a reduction by 5.7% in the prediction accuracy for urinary N output was noticed. In medium CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.227, 0.391 and 0.394, respectively; diet CP-specific equations improved accuracy by 13.2%, 41.2% and 16.8% respectively. In high CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.120, 0.154 and 0.144, respectively; diet CP-specific equations improved accuracy in certain occasions by 5.8%, 9.1% and 6.3% respectively. This study demonstrated that for improved prediction accuracy of N outputs in manure, urine and faeces from beef cattle, the use of dietary CP concentration is essential while dietary starch, fat, and metabolisable energy concentrations can be used to further improve accuracy. In beef cattle fed low CP concentration diets, using diet CP-specific equations improves prediction accuracy when feed intake or dietary CP concentration are not known. However, in beef cattle fed medium or high CP concentration diets, using equations that have been developed from animals fed similar CP concentration diets, substantially improves the prediction accuracy of N outputs in manure, urine and faeces in most cases.


Assuntos
Esterco , Nitrogênio , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fezes/química , Feminino , Lactação , Leite/química , Nitrogênio/análise
14.
Front Microbiol ; 12: 663945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276597

RESUMO

Selenium (Se) deficiency is a widespread and seasonally chronic phenomenon observed in Tibetan sheep (Ovis aries) traditionally grazed on the Qinghai-Tibet Plateau (QTP). Effects of the dietary addition of Se-enriched yeast (SeY) on the bacterial community in sheep rumen and rumen fermentation were evaluated with the aim of gaining a better understanding of the rumen prokaryotic community. Twenty-four yearling Tibetan rams [initial average body weight (BW) of 31.0 ± 0.64 kg] were randomly divided into four treatment groups, namely, control (CK), low Se (L), medium Se (M), and high Se (H). Each group comprised six rams and was fed a basic diet of fresh forage cut from the alpine meadow, to which SeY was added at prescribed dose rates. This feed trial was conducted for over 35 days. On the final day, rumen fluid was collected using a transesophageal sampler for analyzing rumen pH, NH3-N content, volatile fatty acid (VFA) level, and the rumen microbial community. Our analyses showed that NH3-N, total VFA, and propionate concentrations in the M group were significantly higher than in the other groups (P < 0.05). Both the principal coordinates analysis (PCoA) and the analysis of similarities revealed that the bacterial population structure of rumen differed among the four groups. The predominant rumen bacterial phyla were found to be Bacteroidetes and Firmicutes, and the three dominant genera in all the samples across all treatments were Christensenellaceae R7 group, Rikenellaceae RC9 gut group, and Prevotella 1. The relative abundances of Prevotella 1, Rikenellaceae RC9 gut group, Ruminococcus 2, Lachnospiraceae XPB1014 group, Carnobacterium, and Hafnia-Obesumbacterium were found to differ significantly among the four treatment groups (P < 0.05). Moreover, Tax4fun metagenome estimation revealed that gene functions and metabolic pathways associated with carbohydrate and other amino acids were overexpressed in the rumen microbiota of SeY-supplemented sheep. To conclude, SeY significantly affects the abundance of rumen bacteria and ultimately affects the rumen microbial fermentation.

15.
Front Vet Sci ; 8: 673822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113677

RESUMO

The Qinghai-Tibet Plateau is characterized by low temperatures and hypoxia, and this feature is more obvious in the winter. However, it is not clear how Tibetan sheep adapt to extreme cold climates. To address this, we used physiological methods combined with next-generation sequencing technology to explore the differences in growth performance, forage nutrient digestion, serum biochemical indexes, and rumen microbial communities of Tibetan sheep (Ovis aries) between the summer and winter. In the summer, owing to the high nutritional quality of the forage, the Tibetan sheep showed enhanced forage degradation and fermentation though increased counts of important bacteria in the rumen, such as Bacteroidetes, Prevotella_1, Prevotellaceae_UCG-003, Ruminococcus_1, Saccharofermentans, and Ruminococcaceae_UCG-014, to improve the growth performance and increase serum immunity and antioxidant status. In the winter, owing to the low nutritional quality of the forage, the Tibetan sheep presented low values of forage degradation and fermentation indicators. The relative abundance of Firmicutes, the Firmicutes/Bacteroidetes ratio, microbial diversity, interactive activity between microorganisms, and metabolism were significantly increased, implying that the rumen microbiota could promote the decomposition of forage biomass and the maintenance of energy when forage nutritional value was insufficient in the winter. Our study helps in elucidating the mechanism by which Tibetan sheep adapt to the high-altitude harsh environments, from the perspective of the rumen microbiota.

16.
Anim Biosci ; 34(8): 1415-1424, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33561924

RESUMO

OBJECTIVE: Portable laser methane detectors (LMDs) may be an economical means of estimating CH4 emissions from ruminants. We validated an LMD-based approach and then used that approach to evaluate CH4 emissions from indigenous dairy cows in a dryland area of Ethiopia. METHODS: First, we validated our LMD-based approach in Simmental crossbred beef cattle (n = 2) housed in respiration chambers and fed either a high- or low-concentrate diet. From the results of the validation, we constructed an estimation equation to determine CH4 emissions from LMD CH4 concentrations. Next, we used our validated LMD approach to examine CH4 emissions in Fogera dairy cows grazed for 8 h/d (GG, n = 4), fed indoors on natural-grassland hay (CG1, n = 4), or fed indoors on Napier-grass (Pennisetum purpureum) hay (CG2, n = 4). All the cows were supplemented with concentrate feed. RESULTS: The exhaled CH4 concentrations measured by LMD were linearly correlated with the CH4 emissions determined by infrared-absorption-based gas analyzer (r2 = 0.55). The estimation equation used to determine CH4 emissions (y, mg/min) from LMD CH4 concentrations (x, ppm m) was y = 0.4259x+38.61. Daily CH4 emissions of Fogera cows estimated by using the equation did not differ among the three groups; however, a numerically greater milk yield was obtained from the CG2 cows than from the GG cows, suggesting that Napiergrass hay might be better than natural-grassland hay for indoor feeding. The CG1 cows had higher CH4 emissions per feed intake than the other groups, without significant increases in milk yield and body-weight gain, suggesting that natural-grassland hay cannot be recommended for indoor-fed cows. CONCLUSION: These findings demonstrate the potential of using LMDs to valuate feeding regimens rapidly and economically for dairy cows in areas under financial constraint, while taking CH4 emissions into consideration.

17.
J Dairy Sci ; 104(1): 367-380, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33131829

RESUMO

The objective of this study was to evaluate the effects of feeding lactating dairy cows with regrowth silages from different 2- and 3-cut harvesting systems on milk production, efficiency of N, and energy utilization. Thirty Nordic Red cows were offered 5 experimental diets containing regrowth silages, crimped barley, and canola meal in replicated incomplete 5 × 4 Latin squares with four 21-d periods consisting of 14 d of feed adaptation and 7 d of sampling. Four second-cut silage diets were examined in a 2 × 2 factorial arrangement, enabling evaluation of effect of harvest time of the early or late first cut on second-cut silages, short or long regrowth interval within second cut, and their interaction on dairy cow performance. The third-cut silage diet harvested from early first cut and short regrowth interval of second-cut ley was compared with the second-cut silage diets to evaluate the difference in dairy cow performance between second- and third-cut silages. Postponing the first cut and extending the regrowth interval decreased dry matter intake (DMI), energy-corrected milk (ECM) yield, nutrient digestibility, and urinary energy output, but improved N efficiency (milk N/N intake). Postponing the first cut also decreased the efficiency of metabolizable energy use for lactation, but increased CH4 yield (CH4/DMI). Extending the regrowth interval decreased feed efficiency (ECM/DMI) and increased CH4 intensity (CH4/ECM). Thus, feeding regrowth silages in 2- or 3-cut systems harvested after an early first cut and short regrowth interval promoted better dairy performance and feed intake, and higher efficiency of feed and energy utilization, but with poorer N efficiency. Feeding third-cut silage improve milk yield and feed efficiency compared with second-cut silages.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Lactação/fisiologia , Poaceae/química , Poaceae/crescimento & desenvolvimento , Silagem/análise , Ração Animal , Animais , Brassica napus/química , Brassica napus/crescimento & desenvolvimento , Digestão , Ingestão de Energia , Metabolismo Energético , Feminino , Hordeum/química , Hordeum/crescimento & desenvolvimento , Leite/química , Nitrogênio/metabolismo
18.
Animals (Basel) ; 10(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352790

RESUMO

The effect of dietary crude protein (CP) level on intake, digestibility, milk production, and nitrogen (N) use efficiency was studied. Twenty-four Holstein-Friesian cows (17 multiparous and seven primiparous) were grouped by parity, days in milk, milk yield, and live weight into six blocks of four, and randomly assigned to four total mixed ration (TMR) treatments, containing 141, 151, 177, or 210 g CP/kg dry matter (DM), over 28 day experimental periods. Apparent total-tract DM and fiber digestibilities and milk fat composition were similar across treatments. Milk protein and urea-N compositions, and urinary and manure N excretion increased linearly, while milk N efficiency (MNE) decreased linearly with increasing CP. DM intake was highest with the 177 diet, while CP intake increased linearly with increasing CP, peaking at 200 g/kg DM. Milk yield increased with CP intake for the three lower CP levels, peaking at 176 g CP/kg DM. The further increase in CP level from 177 to 210 g/kg DM did not result in improved milk yield, but resulted in decreased milk N secretion and increased urinary N excretion. In summary, milk protein composition increased linearly with increasing CP, accompanied by a linear decrease in MNE, resulting in a bell-shaped relationship between milk yield and dietary CP level.

19.
BMC Microbiol ; 20(1): 370, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276718

RESUMO

BACKGROUND: Rumen microbiota in ruminants are vital for sustaining good rumen ecology, health, and productivity. Currently, limited information is available regarding the response of yaks (Bos grunniens) to fluctuating environments, especially the rumen microbiome. To address this, we investigated the diet, rumen bacterial community, and volatile fatty acids (VFA) of rumen fluid of yaks raised in the great Qinghai-Tibet plateau (QTP) at 2800 (low altitude, L), 3700 (middle altitude, M), and 4700 m (high altitude, H) above sea level. RESULTS: The results showed that despite a partial diet overlap, H yaks harbored higher fibrous fractious contents than the M and L grazing yaks. Bacteria including Christensenellaceae_R-7_group, Ruminococcus_1, Romboutsia, Alloprevotella, Eubacterium coprostanoligenes, Clostridium, Streptococcus, and Treponema were found to be enriched in the rumen of yaks grazing at H. They also showed higher rumen microbial diversity and total VFA concentrations than those shown by yaks at M and L. Principal coordinates analysis (PCoA) on weighted UniFrac distances revealed that the bacterial community structure of rumen differed between the three altitudes. Moreover, Tax4fun metagenome estimation revealed that microbial genes associated with energy requirement and carbohydrate metabolic fate were overexpressed in the rumen microbiota of H yaks. CONCLUSIONS: Collectively, our results revealed that H yaks had a stronger herbage fermenting ability via rumen microbial fermentation. Their enhanced ability of utilizing herbage may be partly owing to a microbiota adaptation for more energy requirements in the harsh H environment, such as lower temperature and the risk of hypoxia.


Assuntos
Microbioma Gastrointestinal/fisiologia , Rúmen/metabolismo , Rúmen/microbiologia , Altitude , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carboidratos/análise , Bovinos , China , Dieta/veterinária , Metabolismo Energético/genética , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fermentação , Conteúdo Gastrointestinal/química , Microbioma Gastrointestinal/genética , Genes Bacterianos/fisiologia , Rúmen/química
20.
Animals (Basel) ; 10(4)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290579

RESUMO

This study is targeted at evaluating whether C. deserticola addition promotes digestion, nitrogen and energy use, and methane production of sheep fed on fresh forage from alfalfa/tall fescue pastures. The sheep feeding trial was conducted with four addition levels with C. deserticola powder, and a basal diet of fresh alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea). Addition levels of 4% and 6% improved average body weight gain (BWG) by 215.71 and 142.86 g/d, and feed conversion ratio (FCR) by 0.20 and 0.14, respectively. Digestibility of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and ether extract (EE) was 62.25%, 65.18%, 58.75%, and 47.25% under the addition level of 2%, which is greater than that in the control group. C. deserticola addition improved energy utilization efficiency, while addition levels of 2% and 4% increased nitrogen intake and deposited nitrogen. Overall, C. deserticola has the potential to improve growth performance, digestion of sheep, so it has suitability to be used as a feed additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA